
ZFS Internal Structure

Ulrich Gräf

Senior SE

Sun Microsystems

ZFS – Filesystem of a New Generation

Integrated Volume Manager
Transactions for every change on the Disk
Checksums for everything
Self Healing
Simplified Administration

Also accelerated
Changes online

Performance through Controll of Datapath

Everything new? No!
But new in this combination!

Another explanation why using ZFS

Current Trends in Datacenters
Larger filesystems
Data lives longer on disks
Backup devices are sufficient
Enough devices for Restore: Expensive
Backups are complemented by copies on disk
Copies on disks are more vulnerable to failures

ZFS and failures

ZFS can correct structural errors caused by
Bit errors (1 sectorin 10^16 reads)
Errors caused by mis-positioning

Phantom writes
Misdirected reads
Misdirected writes

DMA parity errors
Bugs in software and firmware
Administration errors

ZFS Self Healing

Elements:
Integrated Volume Manager
(Large!) Checksums inside of Block Pointer

How does it work?
Read a block determined by Block Pointer
Create a checksum
Compare it with checksum in Block Pointer
On Error: use/compute block (redundancy)

Structural Integrity (remember: Star Trek)

ZFS Self Healing

Is different from other filesystems
Is a quality not available from other filesystems
Is only possible when combining

Integrated Volume Manager
Redundant Setup
Large Checksums

Is not available on
Reiser*, ext3/ext4, WAFL, xfs
Will be available on btrfs, when it is finished
(but not all other ZFS features)

ZFS Self Healing

Application

ZFS mirror

Application

ZFS mirror

Application

ZFS mirror

ZFS Structure:
Uberblock
Tree with Block Pointers
Data only in leaves

ZFS Structure

ZFS Structure: vdev

A ZFS pool (zpool) is built from
Whole disks
Disk partitions
Files

… called physical vdev

ZFS Structure: Configuration

Configuration can be
Single device
Mirrored (mirror)
RAID-5/RAID-6 (raidz, raidz2)
Recently: raidz3 (raidzn is in planning)

ZFS: physical vdev

Each physical vdev contains
4 vdev labels (256 KB each)

2 labels at the beginning
2 labels at the end

A 3.5 MB hole for boot code
128kb blocks for data of the zpool

LL LHL

ZFS: vdev label

A vdev label contains 3 parts
gap (avoid conflicts with disk labels)
nvlist (name – value pair list) (128KB)

Attributes of the zpool
Including the configuration of the zpool

uberblock array (128 entries, each 1KB)

Configuration also defines logical vdevs
mirror or raidz, log and cache devices

ZFS: nvlist in a vdev label (1)

$ zdb -v -v data
version=4
 name='data'
 state=0
 txg=162882
 pool_guid=1442865571463645041
 hostid=13464466
 hostname='nunzio'
 vdev_tree ...

ZFS: nvlist in a vdev label (2)

 vdev_tree
 type='root'
 Id=0
 guid=1442865571463645041
 children[0]
 type='disk'
 id=0
 guid=15247716718277951357
 path='/dev/dsk/c1t0d0s7'
 devid='id1,sd@SATA_____SAMSUNG_HM251JJ_______S1J...
 phys_path='/pci@0,0/pci1179,1@1f,2/disk@0,0:h'
 whole_disk=0
 metaslab_array=14
 metaslab_shift=27
 ashift=9
 asize=25707413504
 is_log=0

ZFS: uberblock

Verification
Magic number (0x00bab1oc) for endianess
Version
Transaction Group number
Time-stamp
Checksum

Content:
Pointer to the root of the zpool tree

ZFS: uberblock: Example

$ zdb -v -v data
...
Uberblock

 magic = 0000000000bab10c
 version = 4
 txg = 262711
 guid_sum = 16690582289741596398
 timestamp = 1256864671 UTC = Fri Oct
23 12:04:31 2009
 rootbp = …
...

ZFS: block pointer

Data virtual address (1, 2 or 3 dva)
Points to other block
References a vdev number defined in configuration
Contains number of block in vdev
Grid information (for raidz)
Gang bit (“gang chaining” of smaller blocks)

Type and size of block (logical, allocated)
Compression information (type, size)
Transaction group numer
Checksum of block (dva points to this block)

ZFS: block pointer: Example

rootbp = [L0 DMU objset]
400L/200P
DVA[0]=<0:5c8087800:200>
DVA[1]=<0:4c81a2a00:200>
DVA[2]=<0:3d002ca00:200>
fletcher4 lzjb LE
Contiguous birth=262711
Fill=324
cksum=914be711d:3ab1cae4571
:c07d93434c9b:1ab1618a08eccd

ZFS: some block pointers in a zpool

LL LHL

LL LHL

LL LHL

ZFS: Transactions

1. Starting at a consistent structure
2. Blocks may be changed by programs

● Only prepared in main memory
● Blocks are never overwritten on disk

3. Transaction is prepared
● Structure is completed up to the root block
● Blocks are written to vdevs
● Only free blocks are used

4. Transaction is committed
● The next uberblock slot is written

ZFS: Transaction

ZFS DMU Objects

All data in a zpool is structured in objects
dnode defines an object

Type and size, indirection depth
List of block pointers
Bonus buffer (f.e. for standard file attributes)

DMU object set
Object that contains an array of dnodes
Uberblock: points to the Meta Object Set

ZFS: Object Structure

ZFS: Intent Log

Stores all synchronously written data
Uses unallocated blocks
Is rooted in the Object Set

ZFS: Dataset and Snapshot Layer

DSL – Dataset and Snapshot Layer
Filesystems
Snapshots, clones
ZFS volumes

Meta Object Set contains Object Set and
Number of DSL directory (ZAP object)
Copy of the vdev configuration
Blockpointers to be freed

ZFS: DSL Structure

ZFS hierarchical names
Child Dataset Entries in the DSL Directory
Each Child has own DSL Directory

DSL Dataset
Implemented by a DMU dnode

Snapshots and Clones
Linked List rooted at the DSL Dataset

ZFS: DSL Structure

ZFS Attribute Processor

ZAP – ZFS Attribute Processor
Name / value pairs
Hash table with overflow lists
Used for

Directories
ZFS hierarchical names
ZFS attributes

ZFS microZAP / FatZAP

microZAP
One block (up to 128k)
Simple Attributes (64 bit number)
Name length limited (50 bytes)

FatZAP
Object
Hash into Pointer Table
Pointers go to Name/Value storage

ZFS Posix Layer / Volume

ZFS Posix Layer
Implements a Posix filesystem with objects
Directories are ZAP objects
Files are DMU objects
Additional: Delete Queue

ZFS Volume
Only one object in DSL Object set the Volume

ZFS: Misc

Data is compressed when specified
Metadata is compressed by default

All internal nodes
ZAP
DSL Directories, DSL Datasets

Copies are implemented with DVA in BP
Zpool data is stored in 3 copies
ZFS data is stored in 2 copies
Data can be stored in up to 3 copies

ZFS Internal Structure

Questions?

	Presentation Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

