0O
Qse®
O gpensoLaris

Greening the
OpenSolaris Kernel

OSDevCon 2009, Dresden

Eric Saxe <eric.saxe@sun.com>

Solaris Kernel Development
Sun Microsystems, Inc.
http://www.opensolaris.org/os/project/tickless

Intro and Overview

O Power Management Feature Background

O Greening the System

O Power Efficient Resource Management
O Efficient Resource Consumption

O Tickless Kernel Project
O Overview
O Progress

O Getting Involved

00 :
O?o. opensolLaris OSDevCon 2009

Resource Power Management

O Active Resource Power States

O Trade off: performance vs. power
0 CPUs: Dynamic Frequency, Voltage Scaling (DVFS)
© Memory, CPUs: Clock Throttling
© CPUs: Dynamic Frequency Overclocking

O Idle Resource Power States

O Trade off: power vs. recovery latency
0 CPUs: ACPI C-states
© Memory: Self-Refresh
0 Systems: Suspend to RAM, Suspend to Disk

o0, ;
03.0 opensolLaris 0SDevCon 2009 Pg 3

CPU Power Management (then)

Dispatcher PM framework < Power Mgmt Policy
- Pall: 1dle? (power.conf)

\
Threa$>-] ‘4/ CPU Power

Scheduling CPUs Control
(throughput) (eff ciency)

O The CPUPM Subsystem and the dispatcher don't necessarily get along.

O Architecture relies on polling, need to periodically look at CPU utilization
statistics, even on an idle system.

O

(o) :
0300“ opensoLaris OSDevCon 2009 pg 4

Dispatcher Integrated CPUPM (now)

power.conf(4)

pm_ioctl()

User

CPU Power

Manager

(Capacity) A
- ..i

(Utilization)

Kernel Dispatcher

Processor Groups
(CMT Scheduling) @ @ .

CPU Power Domains

CPU PM Platform
Code

HE-_

(Power Control)
O Event based architecture driven by thread scheduling activity (no polling)

(Power State
Awareness)

O Enables power aware thread placement, and thread aware CPU power
management

O Dynamic Frequency and Voltage Scaling, and multi-level C-states

o0 ;
O:%y’ opensolaris 0SDevCon 2009 Pg 5

But None of it Matters....

O ... If consumers are wasteful (or just broken) with
respect to resource utilization.

o0, ;
03.0 opensolLaris 0SDevCon 2009 pg 6

But None of it Matters....

O ... If consumers are wasteful (or just broken) with
respect to resource utilization.

O There's limits to what can be done with respect to
optimizing resource management efficiency...

O “throttling” requests (where possible) generally
detrimental to performance

O Imposing “active PM” residency at the expense of
“idle PM” residency generally not good trade-off

o0, ;
O;'o opensoLaris 0SDevCon 2009 Pg 7

But None of it Matters....

O ... If consumers are wasteful (or just broken) with
respect to resource utilization.

O There's limits to what can be done with respect to
optimizing resource management efficiency

O “throttling” requests (where possible) generally
detrimental to performance

O Imposing “active PM” residency at the expense of
“idle PM” residency generally not good trade-off

O Good resource management ultimately cannot
compensate for wasteful resource consumption.

o0, ;
03.0 opensolLaris 0SDevCon 2009 pg 8

Profiles of Inefficient Software

O Resource consumption non proportional with respect to
useful work performed...

Poor Scalability Poor Reverse Scalability

Resource Utilization

O At higher utilizations with poor scaling...
O Too many threads, memory leaks, etc.
O At low/zero utilization, by not yielding (or continuing to use)
resources
O e.g. periodic “polling” for a condition

Work Done
Work Done

Resource Utilization

00 _
0309. opensoLaris 0SDevCon 2009 Pg 9

Observing Inefficiency

O A simple approach for the low utilization case...
O At system idle no useful work is being performed...
O So watch who's using resources (they are being bad).

Work Done

?

=

Resource Utilization

o0, ;
o‘oo opensoLaris 0SDevCon 2009 pg 10

Observing Inefficiency

O A simple approach for the low utilization case...
O At system idle no useful work is being performed...
O So watch who's using resources (they are being bad).

Work Done

?

Resource Utilization

O Optimizing for the low utilization case makes sense, due to
effectiveness of idle power management features.

O In many ways, high utilization case already pursued though
performance (scalability) efforts.

o0, ;
O;B opensoLaris 0SDevCon 2009 pg 11

PowerTOP(1M

(| B PowerTOP for OpenSolaris wv1.1 = = E3

File Edit wiew Terminal Tabs Heslp

OpenSolaris PowerTOP wversion 1.1 (C) 2007 Intel Corporation [a
~
cn Avg residency P-states (frequencies)
Co {cpu running) (59, 5%) 1998 Mh=z 100, Ofs
c1l Q.1ms L40. 1%) 2997 Mh=z Q. Ces
Wakeups-from-idle per second: 3477.2 interval: 1.0s

no ACPT power usage estimate available

Top causes fTor wakeups:

865.3% (3000.0) <interrupt> : hdaudio#o

4.3% (148.5) =kernel= : uhci uhci_handle_root_hub_status_change
3.5% (121.8) <=interrupt= : nvidia#o

2.4% (116.8) sched : =cross callss>

2.1% (107.9) =interrupt= : elO00g#O

2.9% (1loo.a) =kernel= : genunix clock

2.8 ([95.0) realplay.bin : <=scheduled timeocut expiration=
1.9% [6656.3) <=kernel= : ehci ehci_handle_root_hub_status_change
1.5% ([5=2.5) sched : <=scheduled timeout expiration=
0.5% [15.8) java : =scheduled timecut expiration=
0.3 ([10.9) firefox-bin : =scheduled timecut expiration=
2.7 [9.9) <kernel= : ata ghd_timeout

0.7 [92.9) mixer_applet2 : =scheduled timeout expiration=
Q.2 [F.9) <kernel= : genunix realitexpire

Q.2% ([7.9 gam_server : =scheduled timeocut expiration=
0.2% [5.9) <=kernel= : uhci uhci_cmd_timeout_hdlr
Q.1% [5.2 thunderbird-bin : <=scheduled timecut expiration=
@.1% ([4.@) =kernel= : genunix’ schedpaging

0.1% [4a.a3) xscreensaver : =scheduled timeocut expiration=
o.1% [3.0) <kernaels= : 1ip tcp_timer_callback

@.1% [3.0) gnome-terminal : =scheduled timeout expiration=

Suggestion: run as root to get suggestions for reducing system power consumption

a4

C

00
Oz’ opensoLaris OSDevCon 2009 pg 12

Greening the System

O Why?
O Improve ability to leverage idle power management

features (especially on small systems).

O Lessen guest performance overhead at zero
utilization (when sharing system with other guests).

O Lessen jitter, to improve RT latency/determinism and
barrier synchronization performance (HPC)

O Improve kernel service scalability

O Set the example for all software in the ecosystem,
and learn (while providing missing mechanism)
along the way...

o0, ;
O;'o opensoLaris 0SDevCon 2009 pg 13

Greening the System

O Consider PowerTOP(1M) an “todo” list.

O Being “tickless” is a matter of degree (not binary)
© e.g. average duration of system quiescence
O Begin by eliminating the 100 Hz clock() cyclic

O Decompose it into component tick based services.
For each service:

© Provide an event based (tickless) implementation
© Where this isn't possible, make it less painful.

O Provide the architecture / interfaces needed to facilitate
event based programming practices (and more efficient
polling) throughout the system.

o0, ;
O;'o opensoLaris 0SDevCon 2009 pg 14

Tickless clock() Overview

O Core tick-based clock() services

O Expire callouts / timeouts (timers)

O Perform CPU utilization accounting for running
threads, and expire time slices

O Bump Ibolt variable (tick resolution time source)
O Time-of-day / hires time sync up

O ...and other stuff that's crept in.

00 :
O?o. opensolLaris OSDevCon 2009

Tickless Timeouts / Callouts

O Historical Implementation

O clock() invoked a routine that would inspect callout
table heaps, expiring due timers.

O Inherently non-scalable and inefficient (as tables
frequently empty on idle systems)

o0, ;
O;'o opensoLaris 0SDevCon 2009 pg 16

Tickless Timeouts / Callouts

O Historical Implementation

O clock() invoked a routine that would inspect callout
table heaps, expiring due timers.

O Inherently non-scalable and inefficient (as tables
frequently empty on idle systems)

O Tickless Implementation
O Re-programmable cyclics introduced

O Per CPU timer heap(s), driven by a re-
programmable cyclic who's firing is set for when the
next timer is due.

O Status: Integrated into Nevada build 103

o0, ;
O;'o opensoLaris 0SDevCon 2009 pg 17

Tickless |bolt

O Ibolt - “lightning bolt”

O “tick” counter (global kernel variable) incremented by clock()
O Used extensively throughout the kernel
O as a low resolution, yet cheap to read (and convenient)
time source
O as arguments for cv_timedwait() and friends

O Likely used in 3™ party kernel modules
O Approach

O Replace the variables with a routine backed by a hardware
time source
O Leverage existing ddi_get_Ibolt()
O Change where Ibolt comes from, not how it is used

O Status
O Preparing to integrate (next few builds)

o0, ;
Oi.o opensoLaris 0SDevCon 2009 pg 18

Tickless Thread Accounting (TAC)

O Approach

O Per thread heap of timers maintained that fire when various
amounts of thread CPU time have elapsed

© time slice expiration, CPU time resource limits, etc.
O Builds upon “reprogramable cyclics” feature

O Implementation
O A TAC omni-cyclic processes the per CPU timer heaps.

O Each CPUs cyclic is programmed at context switch time to the
earliest timer in the heap

O On cyclic expire, accounting is done and the cyclic is reprogrammed
to the next timer

O If the cyclic detects a kernel thread, it switches itself off

O Status

O In development. Design document available for review.

o0, ;
O;'o opensoLaris 0SDevCon 2009 pg 19

Tickless OpenSolaris Project

QO Primary mailing list: tickless-dev@opensolaris.org

O Source repositories hosted on hg.opensolaris.org
© One “gate” per clock() sub project
© Will likely maintain a repo that is also the merge of the sub-projects

O Bug Tracking
O Bugzilla: http://defect.opensolaris.org/

© Track bugs under: Development/power-mgmt/tickless*
® tickless tick accounting, tickless Ibolt, tickless time sync, tickless clock misc
© All bug updates currently go to tickless-dev as well

O Dev Team Meetings
O Tuesdays 10:30AM Pacific
O Concall info on project page

o0, ;
O;'o opensoLaris 0SDevCon 2009 Pg 20

mailto:tickless-dev@opensolaris.org
http://defect.opensolaris.org/

Tickless OpenSolaris Project

@ Tickless Kernel Architecture at OpenS

File Edit View History Bookmarks Tools Help

& = - Y €3 45 os|htpswww.opensolaris.org/os/project/tickless/ L]

[& Most Visited - g Getting Started [5]Latest Headlines » & Developer Guide

- © v O B %
= 8 S
opensolaris 2.0 89 B &

~ |Google

Search You are not signed in. Sign in or register.

Project: Tickless <)
Kernel Architect . 2 e .
TR sELre OpenSolaris Project: Tickless Kernel Architecture
e View the leaders for this project
Observers
Tasks Project Observers

clock() and lbolt

Ewent based load.avg Endorsing communities

Tick Accounting

Time Adjustment Power Management
Discussions
ArngUncEments Tickless Kernel Architecture

Overview

By default, the clock cyclic fires at 100 Hz, regardless of whether or not any timeouts/callouts are scheduled to fire/expire. This is suboptimal from a power efficiency standpoint, as at least one of the
system's CPUs never become quiescent/idle enough to be brought into a low power state.

This work involves re-implementing the services presently provided by clock(} in a tickless (or event based) fashion, eliminating the need for the system to "wake up", only to realize that there's
nothing to do on an otherwise idle system.

Tasks

Please have a look at the Tasks page and it's child pages for more information on the implementation of this project.

Getting Involved

If you would like to be involved with this project, the best way to get started is to join the project development mailing list, and introduce yourself (who you are, what you do, what interests you about
this project, etc). If there is something in particular you a looking for, please feel free to ask.

Project Mail Aliases
tickless dash dev at opensolaris dot org is the project's primary development mailing list. Please feel free to subscribe.

» Subscribe
* Unsubscribe

* Change your subscription options
» View the list archives

CRs

Currently, this project and its subtasks are tracked by the following change requests:

6567390 clock efficiency optimizations ("tickless clock")
Announcements £

16 Mar 2009 'tick-off" meeting announcement

Blogs

rv - Split views

(o]

% opensolaris 0SDevCon 2009 pg 21

References

O Tickless Project Page
O http://www.opensolaris.org/os/project/tickless

O Power Management Community
O http://www.opensolaris.org/os/community/pm

00 .
03.0. opensoLaris 0SDevCon 2009

http://www.opensolaris.org/os/project/tickless
http://www.opensolaris.org/os/community/pm

Qse®
O gpensolLaris

http://www.opensolaris.org/os/projects/tickless
tickless-dev@opensolaris.org

http://www.opensolaris.org/os/projects/tickless

	Cover
	Overview
	Slide 3
	PAD (1)
	PAD (2)
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	cover (2)

