
Greening the
OpenSolaris Kernel

OSDevCon 2009, Dresden

Eric Saxe <eric.saxe@sun.com>

Solaris Kernel Development
Sun Microsystems, Inc.
http://www.opensolaris.org/os/project/tickless

OSDevCon 2009 pg 2

Intro and Overview

Power Management Feature Background

Greening the System

Power Efficient Resource Management
Efficient Resource Consumption

Tickless Kernel Project
Overview
Progress

Getting Involved

OSDevCon 2009 pg 3

Resource Power Management

Active Resource Power States

Trade off: performance vs. power

CPUs: Dynamic Frequency, Voltage Scaling (DVFS)

Memory, CPUs: Clock Throttling

CPUs: Dynamic Frequency Overclocking

Idle Resource Power States

Trade off: power vs. recovery latency

CPUs: ACPI C-states

Memory: Self-Refresh

Systems: Suspend to RAM, Suspend to Disk

OSDevCon 2009 pg 4

CPU Power Management (then)

The CPUPM Subsystem and the dispatcher don't necessarily get along.

Architecture relies on polling, need to periodically look at CPU utilization
statistics, even on an idle system.

Dispatcher

CPUs

Power Mgmt Policy
(power.conf)

CPU Power
Control

(effi ciency)

PM framework

Thread
Scheduling

(throughput)

Poll: Idle?

OSDevCon 2009 pg 5

Dispatcher Integrated CPUPM (now)

Event based architecture driven by thread scheduling activity (no polling)

Enables power aware thread placement, and thread aware CPU power
management

Dynamic Frequency and Voltage Scaling, and multi-level C-states

User

Kernel Dispatcher

pm
CPU Power
Manager

power.conf(4)

(Power State
Awareness)

(Power Control)

(Utilization)

Processor Groups
(CMT Scheduling) CPU Power Domains

CPU PM Platform
Code

(Capacity)

pm_ioctl()

OSDevCon 2009 pg 6

But None of it Matters....

… If consumers are wasteful (or just broken) with
respect to resource utilization.

OSDevCon 2009 pg 7

But None of it Matters....

… If consumers are wasteful (or just broken) with
respect to resource utilization.

There's limits to what can be done with respect to
optimizing resource management efficiency...

“throttling” requests (where possible) generally
detrimental to performance

Imposing “active PM” residency at the expense of
“idle PM” residency generally not good trade-off

OSDevCon 2009 pg 8

But None of it Matters....

… If consumers are wasteful (or just broken) with
respect to resource utilization.

There's limits to what can be done with respect to
optimizing resource management efficiency

“throttling” requests (where possible) generally
detrimental to performance

Imposing “active PM” residency at the expense of
“idle PM” residency generally not good trade-off

Good resource management ultimately cannot
compensate for wasteful resource consumption.

OSDevCon 2009 pg 9

Profiles of Inefficient Software

Resource consumption non proportional with respect to
useful work performed...

Resource Utilization

W
or

k
D

on
e

Poor Scalability

Resource Utilization

W
or

k
D

on
e

Poor Reverse Scalability

At higher utilizations with poor scaling...
Too many threads, memory leaks, etc.

At low/zero utilization, by not yielding (or continuing to use)
resources

e.g. periodic “polling” for a condition

OSDevCon 2009 pg 10

Observing Inefficiency

A simple approach for the low utilization case...
At system idle no useful work is being performed...
So watch who's using resources (they are being bad).

Resource Utilization

W
or

k
D

on
e

?

OSDevCon 2009 pg 11

Observing Inefficiency

A simple approach for the low utilization case...
At system idle no useful work is being performed...
So watch who's using resources (they are being bad).

Resource Utilization

W
or

k
D

on
e

?

Optimizing for the low utilization case makes sense, due to
effectiveness of idle power management features.

In many ways, high utilization case already pursued though
performance (scalability) efforts.

OSDevCon 2009 pg 12

PowerTOP(1M)

OSDevCon 2009 pg 13

Greening the System
Starting with the Kernel...

Why?
Improve ability to leverage idle power management
features (especially on small systems).
Lessen guest performance overhead at zero
utilization (when sharing system with other guests).
Lessen jitter, to improve RT latency/determinism and
barrier synchronization performance (HPC)
Improve kernel service scalability
Set the example for all software in the ecosystem,
and learn (while providing missing mechanism)
along the way...

OSDevCon 2009 pg 14

Greening the System
Approach

Consider PowerTOP(1M) an “todo” list.

Being “tickless” is a matter of degree (not binary)
e.g. average duration of system quiescence

Begin by eliminating the 100 Hz clock() cyclic
Decompose it into component tick based services.
For each service:

Provide an event based (tickless) implementation
Where this isn't possible, make it less painful.

Provide the architecture / interfaces needed to facilitate
event based programming practices (and more efficient
polling) throughout the system.

OSDevCon 2009 pg 15

Tickless clock() Overview

Core tick-based clock() services

Expire callouts / timeouts (timers)

Perform CPU utilization accounting for running
threads, and expire time slices

Bump lbolt variable (tick resolution time source)

Time-of-day / hires time sync up

...and other stuff that's crept in.

OSDevCon 2009 pg 16

Tickless Timeouts / Callouts

Historical Implementation

clock() invoked a routine that would inspect callout
table heaps, expiring due timers.
Inherently non-scalable and inefficient (as tables
frequently empty on idle systems)

OSDevCon 2009 pg 17

Tickless Timeouts / Callouts

Historical Implementation

clock() invoked a routine that would inspect callout
table heaps, expiring due timers.
Inherently non-scalable and inefficient (as tables
frequently empty on idle systems)

Tickless Implementation
Re-programmable cyclics introduced
Per CPU timer heap(s), driven by a re-
programmable cyclic who's firing is set for when the
next timer is due.
Status: Integrated into Nevada build 103

OSDevCon 2009 pg 18

Tickless lbolt

lbolt - “lightning bolt”
“tick” counter (global kernel variable) incremented by clock()
Used extensively throughout the kernel

as a low resolution, yet cheap to read (and convenient)
time source
as arguments for cv_timedwait() and friends

Likely used in 3rd party kernel modules
Approach

Replace the variables with a routine backed by a hardware
time source

Leverage existing ddi_get_lbolt()
Change where lbolt comes from, not how it is used

Status
Preparing to integrate (next few builds)

OSDevCon 2009 pg 19

Tickless Thread Accounting (TAC)

Approach
Per thread heap of timers maintained that fire when various
amounts of thread CPU time have elapsed

time slice expiration, CPU time resource limits, etc.
Builds upon “reprogramable cyclics” feature

Implementation
A TAC omni-cyclic processes the per CPU timer heaps.
Each CPUs cyclic is programmed at context switch time to the
earliest timer in the heap
On cyclic expire, accounting is done and the cyclic is reprogrammed
to the next timer
If the cyclic detects a kernel thread, it switches itself off

Status
In development. Design document available for review.

OSDevCon 2009 pg 20

Tickless OpenSolaris Project
Getting Involved

Primary mailing list: tickless-dev@opensolaris.org

Source repositories hosted on hg.opensolaris.org
One “gate” per clock() sub project

Will likely maintain a repo that is also the merge of the sub-projects

Bug Tracking

Bugzilla: http://defect.opensolaris.org/
Track bugs under: Development/power-mgmt/tickless*

tickless tick accounting, tickless lbolt, tickless time sync, tickless clock misc

All bug updates currently go to tickless-dev as well

Dev Team Meetings
Tuesdays 10:30AM Pacific

Concall info on project page

mailto:tickless-dev@opensolaris.org
http://defect.opensolaris.org/

OSDevCon 2009 pg 21

Tickless OpenSolaris Project

OSDevCon 2009 pg 22

References

Tickless Project Page
http://www.opensolaris.org/os/project/tickless

Power Management Community
http://www.opensolaris.org/os/community/pm

http://www.opensolaris.org/os/project/tickless
http://www.opensolaris.org/os/community/pm

http://www.opensolaris.org/os/projects/tickless

tickless-dev@opensolaris.org

http://www.opensolaris.org/os/projects/tickless

	Cover
	Overview
	Slide 3
	PAD (1)
	PAD (2)
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	cover (2)

