

October 28 - 30, 2009, Dresden

High Availability with a minimal Cluster

29. October 2009

Thorsten Früauf **Availability Engineering** Sun Microsystems GmbH

Agenda

- O Motivation
- Open HA Cluster 2009.06
- Minimal HA Configuration
 - Weak Membership
 - COMSTAR / iSCSI / ZFS
 - Crossbow
 - o IPS
- O Live Demo
- O References

Why care about High Availability?

- O Computer systems provide services:
 - Web Services,
 Databases,
 Business Logic, File
 Systems, etc.
- O Downtime is costly
 - Services should be available as close as possible to 100% of the time

- o Failures are inevitable:
 - Software Bugs
 - Hardware components
 - People and Processes
 - Natural Disaster
 - Terrorism

The Goal of High Availability

HA Cluster automate the recovery process from inevitable failures to minimize downtime and cost.

You don't want your users to see this...

Methods to implement HA

- Redundant hardware
 - physical nodes, network adapters, network paths, storage, storage paths, etc.
- Software monitoring
 - physical nodes, applications, network paths, storage paths, etc.
- Failover to secondary hardware when problems detected

Perceptions of HA Clusters

- o complex
- o complicated
- o heavyweight
- o difficult to install

- o difficult to use
- requires special hardware
- o expensive

Perceptions not completely unfounded...

Typical HA Cluster Hardware config

- Two or more physical machines
- Four or more network adapters on each machine
- Dedicated interconnects between nodes
- Shared disk storage
 - multi-homed disks or network-attached storage
- Redundant storage paths from each node
- Quorum arbitration device
- o etc.

Typical HA Cluster software components

- O Heartbeats
- O Membership
- Distributed configuration repository
- O Service management
- Cluster-private networking layer
- Global file system
- Network load-balancing
- o etc.

Solaris Cluster Architecture

Campus / Metro Cluster

Solaris Cluster Geographic Edition

Re-evaluate HA Cluster Complexity

- Many use cases (incl. SLA) require all the hardware and software in traditional HA Clusters
- o ... but not everything... approach: "good enough" is sufficient as well!
- Configure, install, and use only the hardware and software components you actually need

Goals of Project Colorado

- Provide a lightweight, modular, cluster that can run on minimized hardware configurations
- O What has been possible before should still be possible to configure
 - as much as OpenSolaris allows

How to Get There

- Port Open HA Cluster source to work with OpenSolaris
- Add hardware minimization features
- Leverage OpenSolaris Image Packaging System (IPS) for software modularity and extensibility
 - Analyze all package dependencies

Development context

SCX = Solaris Cluster Express

OHAC = Open HA Cluster

SXCE = Solaris Express Community Edition

Solaris Express vs. OpenSolaris

Solaris Express (Nevada)

Binary distribution of usr/src und usr/closed not freely redistributable

OpenSolaris 200X.Y

Binary distribution on LiveCD freely redistributable packages (pkg.opensolaris.org Repo)

not freely redistributable packages (pkg.sun.com Repo)

Open HA Cluster 2009.06 (Colorado-I)

- O Runs on OpenSolaris 2009.06 (SPARC & x86/x64)
- Many features from Solaris Cluster 3.2 available
- Free to use (without support)
 - Support subscriptions available
- Installation from IPS package repository https://pkg.sun.com/opensolaris/ha-cluster
- Source is open and freely available at http://www.opensolaris.org/os/community/haclusters/

Open HA Cluster 2009.06 Agents

- O Apache Webserver
- O Apache Tomcat
- O MySQL
- O GlassFish
- o NFS

- **O DHCP**
- o DNS
- O Kerberos
- O Samba
- HA Containers
 - ipkg Zones

Generic Data Service (GDS)

Hardware Minimization

- Using local disks as "Poor man's shared storage" with COMSTAR iSCSI and ZFS
- Using Crossbow VNICs for private cluster traffic over public network
- o "Weak membership" (preview-only feature)

Taken together, allow any two-nodes on the same IP subnet to form a functional cluster.

Minimale HA Konfiguration

Technologies useable for Minimization

- Weak Membership
- Software Quorum
- Quorum Server
- Optional Fencing
- O HA ZFS

- O COMSTAR / iSCSI
- O IPsec
- O Crossbow
- o IPS
- VirtualBox
 - for training and development

HA Cluster "Strong Membership"

- Use concept of quorum to ensure cluster consistency in the presence of partitions in space and time
 - Partition in space (network partition) can cause split-brain
 - Partition in time can cause amnesia
- Two-node cluster requires third arbitration device in case of partitions
 - Typically hardware disk or software quorum server

Weak Membership (preview feature)

- Run a two-node cluster without a quorum device
- External "ping target" used as "health check" to arbitrate in case of split-brain
 - Worst-case, both nodes stay up and provide service
 - OpenSolaris Duplicate Address Detection (DAD) can mitigate somewhat
- Places importance of availability above data integrity
 - Can lead to data loss

Why use Weak Membership?

- Read-only or read-mostly applications
- Availability is more important than data integrety
 - the SLA matches (solution is "good enough")
- Test Cluster with limited resources
- O Demos
- O Development
- Training

iSCSI Storage

- IP-based storage networking standard
- Initiators (clients) send SCSI commands to targets (storage devices) over regular IP networks
- Alternative to NAS, SAN and DAS
- The OpenSolaris Common Multiprotocol iSCSI Target (COMSTAR) implements the iSCSI protocol

COMSTAR iSCSI for OHAC 2009.06

- Each node exports directly-attached disk as iSCSI target
- Nodes access both disks through iSCSI initiators
- Mirrored zpool built on top of the two disks
- HAStoragePlus imports zpool on node hosting the services that need it
- O If one node goes down, local half of mirror still available and accessible from other node

COMSTAR iSCSI Configuration

iSCSI with MPxIO and OHAC 2009.06

- OpenSolaris Storage Multipathing
 - Multiple redundant paths to storage
 - Operates above transport layer
- Configure MPxIO over redundant private interconnects to provide multiple paths to iSCSI targets (needs strong membership)
- Benefits of MPxIO with iSCSI in OHAC
 - Supports RDMA (infiniband)
 - Round-robin load balancing for increased throughput

iSCSI with MPxIO Configuration

Crossbow VNICs

- Virtual Network Interface Card (VNIC)
- O Pseudo-network interface
- VNICs configured on a physical interface

dladm create-vnic -l e1000g0 vnic1

Crossbow VNICs with OHAC 2009.06

- Cluster private interconnect can use VNICs as endpoints instead of physical adapters
- Work over dedicated physical adapter or public adapter
- Use IPsec to protect cluster-private traffic
 - Though DLPI heartbeats not protected
- Resource consolidation: Share physical adapters
- Easier setup: No dedicated private physical adapters and cabling required

OHAC 2009.06 Software Modularization

- ha-cluster-full group package
 - Contains core framework, wizards, agents, man pages, I10n, ... (everything)
- ha-cluster-minimal group package
 - Only core framework
 - Add agents, wizards, I10n, man pages, telemetry, etc. individually as needed
- Install quorum server and agent builder without core framework

Why Minimal Installation is Useful

- Minimizing resources (you don't pay for what you don't need)
 - Disk space
 - Network download bandwidth
 - o etc.
- Security minimization
- Minimizing administrative overhead
 - Both initial and ongoing

Installing Open HA Cluster 2009.06

- Accept terms of use at pkg.sun.com and download key and certificate to /var/pkg/ssl
- O Set ha-cluster publisher (on all nodes):

```
# pkg set-publisher \
-k /var/pkg/ssl/Open_HA_Cluster_2009.06.key.pem \
-c /var/pkg/ssl/Open_HA_Cluster_2009.06.certificate.pem \
```

-O https://pkg.sun.com/opensolaris/ha-cluster/ ha-cluster

Installing OHAC 2009.06 (cont)

Install the cluster software (on all nodes):# pkg install ha-cluster-full

Configure the cluster (on one node):# /usr/cluster/bin/scinstall

Live Demo

- O Toshiba M10
 - 4 GB main memory
 - 160 GB hard disk
 - OpenSolaris 2009.06
 - Open HA Cluster 2009.06
 - VirtualBox 3.0.8

References (1)

- Open HA Cluster 2009.06 Documentation
 - http://www.opensolaris.com/learn/features/availability/
 - http://docs.sun.com/app/docs/prod/open.ha.cluster~2509.1#hic
- Solaris Cluster Blog
 - http://blogs.sun.com/SC
- White Paper: Running Open HA Cluster on OpenSolaris with VirtualBox
 - http://opensolaris.org/os/project/colorado/files/Whitepaper-OpenHAClusterOnOpenSolaris-external.pdf

References (2)

- HA Clusters Community Group
 - http://opensolaris.org/os/community/ha-clusters/
- Project Colorado
 - http://opensolaris.org/os/project/colorado/
- Project Image Packaging System (IPS)
 - http://opensolaris.org/os/project/pkg/
- Project Crossbow (VNICs)
 - http://opensolaris.org/os/project/crossbow/
- O Project COMSTAR (iSCSI)
 - http://opensolaris.org/os/project/comstar/

Thank You! Questions?

thorsten.frueauf@sun.com http://blogs.sun.com/tf

Thorsten Früauf Availability Engineering Sun Microsystems GmbH