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Agenda

• Process life
• Signals
• Atfork handlers
• Memory access
• Sessions
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Why

• Nine years ago I spent one month to develop 
multithreaded application and three months to hunt 
a bugs.

• In former company I spent 3 weeks to rewrote 
signal handling to work correctly.

• Now because 6842872, 6828366, 6823591, 
6548350, 6276483, ...
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Process life - I

• Before main() function compiler and linker add 
prologue which setup libraries.

• After main() compiler and linker add epilogue which 
call exit(2) from libc.

• Exit(2) function call all atexit handler and close all 
opened files. After that it calls _exit(2) syscall.

•  _exit(2) syscall start to cleanup process and their 
threads.
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Process life - II

• Prologue runs as single threaded and .init sections 
are processed in the main thread, but if library is 
dynamically opened by dlopen(3C), application can 
have more threads already.

• When exit(2) is invoked other threads are still active 
and running. Clean up (e.g. atexit handlers, .fini) 
usually causes fatal errors or crash.
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Process life - III

• Do not except that .init section runs in single 
threaded process.

• Do not call exit(2) function when more threads are 
running.

• Dedicate one thread (usually main thread) which 
control worker threads and which is responsible for 
cleanup.
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Signals - I

• Signal is asynchronous event used for inter process 
communication.

• When signal arrives and it is not blocked one thread 
is interrupted and the thread runs signal handler.

• Signal handler runs in parallel with other threads.
• Each thread has own signal mask which is inherited 

from parent thread.
• Because list of signal safe functions is limited 

dedicate one thread to signal processing is better.
• DO NOT use mutexes in signal handler.
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Signals - II

void *sigint(void *arg)

{

int     sig;

for(;;)

{

sigwait ( &signalSet, &sig );

if ( sig == SIGINT )

{

printf("Got signal SIGINT\n");

return NULL;

}

}

}
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Atfork handlers I

• Fork(2) calls create children process which inherits 
only calling thread, but all mutexes, condvariables 
and so on stay in state before fork(2). For example 
some mutexes can be locked.

• It is important (especially for library) to handle it 
correctly.

• pthread_atfork(3C) allows to setup handlers which 
are called before and after fork. Handlers should 
acquire all mutexes before fork and released it after.

• Atfork handlers are processed in parallel with other 
threads.
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Atfork handlers II

• Atfork handler have to be setup before any lock is 
acquired.

• Order of handlers registration is important. Wrong 
order can lead to deadlocks.

• Fork(2) and pthread_atfork(3C) use internally same 
mutex for atfork handler list access. 
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Atfork handler III

pkcs11_softtoken.so pkcs11_kernel.so

libpkcs11.so

Meta sl. Slot 1 Slot 2

App 1 App 2 App 3

Note: Linking application directly against to pkcs11_softtoken and pkcs11_kernel is not recommended.

dlopen()/dlclose()
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Atfork handler IV

Thread 1 Thread 2

C_Initialize(...)

pthread_mutex_lock(&global)

…

pkcs11_slot_mapping(...)

  dlopen(softtoken)

    .init

  pthread_atfork(...)

    pthread_mutex_lock(&atfork_list)

...

fork()

  pthread_mutex_lock(&atfork_list)

pkcs11_atfork_prepare()

  pthread_mutex_lock(&global)
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Parallel memory access

• Access to shared memory has to be protected by 
lock. It is not necessary only in few cases.

• Locking is expensive and also critical section length 
has impact on performance and scalability.

• Using one giant lock is easy to implement, but 
application scalability is poor.

• Locking has to be designed at begging of 
development. Any future lock splitting is expensive 
and it is root cause of many bugs.

• Prefer pthread_rwlock for better scalability.
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atomic.h

• Solaris offer bunch of atomic operations in atomic.h 
(atomic_ops(3C), membar_ops(3C))

• It is good when we need simple data structure 
modifications.

• Unfortunately, functions are not portable.
• Membar_ops are generic memory barriers which 

are dedicated to guaranties read/write memory 
order.
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Thread Local Storage (TLS)

• Thread local storage is method how to store thread 
specific data.

• POSIX defines pthread_key_defines, 
pthread_setspecific, pthread_getspecific function.

• Compilers offer syntactic sugar. For example:
__thread int localint;
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Sessions

• Sessions are used to keep state information of 
communication between client and server or 
application and libraries.

• One session should not be used in different threads. 
Parallel usage causes usually crash or strange 
behavior.

• Session pooling is used for resource reduction in 
some cases, but usually it has limitations.
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