
Dead ways in
multithreaded
programing

Zdeněk Kotala
Revenue Product Engineer
Sun Microsystems

1

2

Agenda

• Process life
• Signals
• Atfork handlers
• Memory access
• Sessions

3

Why

• Nine years ago I spent one month to develop
multithreaded application and three months to hunt
a bugs.

• In former company I spent 3 weeks to rewrote
signal handling to work correctly.

• Now because 6842872, 6828366, 6823591,
6548350, 6276483, ...

4

Process life - I

• Before main() function compiler and linker add
prologue which setup libraries.

• After main() compiler and linker add epilogue which
call exit(2) from libc.

• Exit(2) function call all atexit handler and close all
opened files. After that it calls _exit(2) syscall.

• _exit(2) syscall start to cleanup process and their
threads.

5

Process life - II

• Prologue runs as single threaded and .init sections
are processed in the main thread, but if library is
dynamically opened by dlopen(3C), application can
have more threads already.

• When exit(2) is invoked other threads are still active
and running. Clean up (e.g. atexit handlers, .fini)
usually causes fatal errors or crash.

6

Process life - III

• Do not except that .init section runs in single
threaded process.

• Do not call exit(2) function when more threads are
running.

• Dedicate one thread (usually main thread) which
control worker threads and which is responsible for
cleanup.

7

Signals - I

• Signal is asynchronous event used for inter process
communication.

• When signal arrives and it is not blocked one thread
is interrupted and the thread runs signal handler.

• Signal handler runs in parallel with other threads.
• Each thread has own signal mask which is inherited

from parent thread.
• Because list of signal safe functions is limited

dedicate one thread to signal processing is better.
• DO NOT use mutexes in signal handler.

8

Signals - II

void *sigint(void *arg)

{

int sig;

for(;;)

{

sigwait (&signalSet, &sig);

if (sig == SIGINT)

{

printf("Got signal SIGINT\n");

return NULL;

}

}

}

9

Atfork handlers I

• Fork(2) calls create children process which inherits
only calling thread, but all mutexes, condvariables
and so on stay in state before fork(2). For example
some mutexes can be locked.

• It is important (especially for library) to handle it
correctly.

• pthread_atfork(3C) allows to setup handlers which
are called before and after fork. Handlers should
acquire all mutexes before fork and released it after.

• Atfork handlers are processed in parallel with other
threads.

10

Atfork handlers II

• Atfork handler have to be setup before any lock is
acquired.

• Order of handlers registration is important. Wrong
order can lead to deadlocks.

• Fork(2) and pthread_atfork(3C) use internally same
mutex for atfork handler list access.

11

Atfork handler III

pkcs11_softtoken.so pkcs11_kernel.so

libpkcs11.so

Meta sl. Slot 1 Slot 2

App 1 App 2 App 3

Note: Linking application directly against to pkcs11_softtoken and pkcs11_kernel is not recommended.

dlopen()/dlclose()

12

Atfork handler IV

Thread 1 Thread 2

C_Initialize(...)

pthread_mutex_lock(&global)

…

pkcs11_slot_mapping(...)

 dlopen(softtoken)

 .init

 pthread_atfork(...)

 pthread_mutex_lock(&atfork_list)

...

fork()

 pthread_mutex_lock(&atfork_list)

pkcs11_atfork_prepare()

 pthread_mutex_lock(&global)

13

Parallel memory access

• Access to shared memory has to be protected by
lock. It is not necessary only in few cases.

• Locking is expensive and also critical section length
has impact on performance and scalability.

• Using one giant lock is easy to implement, but
application scalability is poor.

• Locking has to be designed at begging of
development. Any future lock splitting is expensive
and it is root cause of many bugs.

• Prefer pthread_rwlock for better scalability.

14

atomic.h

• Solaris offer bunch of atomic operations in atomic.h
(atomic_ops(3C), membar_ops(3C))

• It is good when we need simple data structure
modifications.

• Unfortunately, functions are not portable.
• Membar_ops are generic memory barriers which

are dedicated to guaranties read/write memory
order.

15

Thread Local Storage (TLS)

• Thread local storage is method how to store thread
specific data.

• POSIX defines pthread_key_defines,
pthread_setspecific, pthread_getspecific function.

• Compilers offer syntactic sugar. For example:
__thread int localint;

16

Sessions

• Sessions are used to keep state information of
communication between client and server or
application and libraries.

• One session should not be used in different threads.
Parallel usage causes usually crash or strange
behavior.

• Session pooling is used for resource reduction in
some cases, but usually it has limitations.

17

Thanks to

Julius Štroffek
Chris Beal

guug

Dead ways in
multithreaded
programing

Zdeněk Kotala
zdenek.kotala@sun.com

18

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

